skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pacenti, Michele"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Quantum low-density parity-check codes are a promising approach to fault-tolerant quantum computation, offering potential advantages in rate and decoding efficiency. Quantum Margulis codes are a new class of QLDPC codes derived from Margulis’ classical LDPC construction via the two-block group algebra framework. We show that quantum Margulis codes, unlike bivariate bicycle codes, which require ordered statistics decoding for effective error correction, can be efficiently decoded using a standard min-sum decoder with linear complexity, when decoded under depolarizing noise. This is attributed to their Tanner graph structure, which does not exhibit group symmetry, thereby mitigating the well-known problem of error degeneracy in QLDPC decoding. To further enhance performance, we propose an algorithm for constructing 2BGA codes with controlled girth, ensuring a minimum girth of 6 or 8, and use it to generate several quantum Margulis codes of length 240 and 642. We validate our approach through numerical simulations, demonstrating that quantum Margulis codes behave significantly better than BB codes in the error floor region, under min-sum decoding. 
    more » « less
    Free, publicly-accessible full text available August 18, 2026
  2. Free, publicly-accessible full text available December 8, 2025
  3. Abstract It is well known that some harmful objects in the Tanner graph of low-density parity-check (LDPC) codes have a negative impact on their error correction performance under iterative message-passing decoding. Depending on the channel and the decoding algorithm, these harmful objects are different in nature and can be stopping sets, trapping sets, absorbing sets, or pseudocodewords. Differently from LDPC block codes, the design of spatially coupled LDPC codes must take into account the semi-infinite nature of the code, while still reducing the number of harmful objects as much as possible. We propose a general procedure, based onedge spreading, enabling the design of good quasi-cyclic spatially coupled LDPC (QC-SC-LDPC) codes. These codes are derived from quasi-cyclic LDPC (QC-LDPC) block codes and contain a considerably reduced number of harmful objects with respect to the original QC-LDPC block codes. We use an efficient way of enumerating harmful objects in QC-SC-LDPCCs to obtain a fast algorithm that spans the search space of potential candidates to select those minimizing the multiplicity of the target harmful objects. We validate the effectiveness of our method via numerical simulations, showing that the newly designed codes achieve better error rate performance than codes presented in previous literature. 
    more » « less